In this talk

- Brief review of autonomous characters
 - Definitions
 - Applications

- Steering behaviors
 - Toolkits and procedural composition
 - Evolutionary computation
 - Physical realism
 - Point–mass versus rigid–body dynamics
Autonomous characters

• Self-directing characters, operate autonomously
 - "Puppets that pull their own strings" (Ann Marion)

• Combination of:
 - Geometrical model of body
 - Animation data or procedures for body
 - Behavioral model
Autonomous characters in animation

© 1994 and 1998
Walt Disney Pictures
Autonomous characters in games
Autonomous characters: groups

• Individual
 – simple local behavior
 – interaction with:
 • nearby individuals
 • local environment

• Group:
 – complex global behavior
Types of behavioral models

- **Kinematic** (animation)
- **Dynamic** (physical simulation)
- **Volition**
 - **Reactive**
 - Like instinct, off-the-cuff decision making
 - **Rule based**
 - Expert system: search through large knowledge base
 - **Planning**
 - Search through space of actions and consequences
A behavioral hierarchy

• Action selection
 – Setting goals, picking strategies

• Path selection: steering
 – Character’s motion through its world

• Pose selection: locomotion
 – Legs walking, arms reaching
 – Wheels rolling
 – etc.
Steering behaviors

- Simple, basic behaviors
 (seek, flee, wander, ...)
- Operators to combine them
 (sum, prioritized selection, dithered decision trees)
- Toolkit of simple and combined behaviors
Simple physical model

- Point mass model:
 - Position, adjusted by velocity
 - Velocity, adjusted by steering forces
 - Linear momentum, but mass has zero radius, so no moment of inertia
- Body shape: sphere (or ellipsoid)
- Velocity—aligned local coordinate system
 - Animated geometrical model can be attached
Point mass vehicle model (1)
Point mass vehicle model (2)
Steering details: *seek* and *flee*
Steering behavior demos
Boids and flocking

- *Historical note: fits in better here, but actually preceded general steering behaviors (1987)*
- Natural flocks are beautiful, and a bit mysterious
 - Can they be portrayed in computer animation?
 - Perhaps gain some insight into how they work?
 - *(ALife --- artificial life)*
 - Can the complex group behavior be explained in terms of simple behavior by the individuals?
 - *(CAS --- complex adaptive systems)*
Boids: three rules

- Three rules seemed *necessary*:
 - Separation
 - Don’t get too close to nearby flockmates
 - Alignment
 - Try to move at the same speed and direction (velocity) as nearby flockmates
 - Cohesion
 - Prefer to be at the center of the local flockmates
- Early experiments verified they were *sufficient*.
Boids: three rules

Separation Alignment Cohesion
Boids for animation production

- Obstacle avoidance
- Flocking
 - Separation
 - Alignment
 - Cohesion
- Attraction to (or repulsion from) a moving target
Stanley and Stella in Breaking the Ice
Pigeons in the Park

- Based on the 1987 boids model of flocks, herds and schools
- Uses fast hardware (PS2), and spatial data structures to accelerate boids: about 6000 times faster than in 1987.
- Allows real time (60 fps) interaction with a group of about 300 birds.
- Includes behavioral state transitions
Pigeons in the Park video
Coevolution of Tag Players

- The game of tag
 - symmetrical pursuit and evasion
 - role reversal
- Goal: discover steering behavior for tag
- Method: emergence of behavior
 - coevolution
 - competitive fitness
- Self–organization:
 - no expert knowledge required
Sensors and obstacles
It works!

![Graph showing comparison between population best and average versus handmade program.](image-url)
Typical fitness test (1)
Typical fitness test (2)
Competitive coevolution: summary

Pros:
- Good results, comparable to human–designed players
- Diversity and skill gradation from evolution history
- Does not require knowing a winning strategy or how to implement it.

Cons:
- Requires very long computation time even for a very simple game.
- Untested for games requiring complex strategy.
Steering and physical realism
Steering and physical realism

• Previous topics use simplistic models of physics

• Work in progress:
 – Real time rigid body dynamics simulator (Eric Larsen)
 – Virtual robot soccer world (Eric Larsen)
 – Autonomous steering behaviors for playing soccer

• More accurate physical model requires more sophisticated steering behaviors.
Earlier work: simplified physics

- Boids (1987), steering behavior toolkit (GDC 1999)
 - Point mass model:
 - Position
 - Velocity, so linear momentum
 - Zero radius, so no moment of inertia
 - Spherical (or ellipsoidal) body

- Evolution of steering behaviors
 - *Physically plausible* kinematic model
Steering for accurate physical models

- Moment of inertia (angular momentum)
 - Must model and compensate for rotational velocity
 - Over-steering and heading oscillation

- More accurate collision modeling
 - Catching corners
 - Non-spherical body shapes
 - Friction
 - Collision avoidance more critical
 - Back up to unwedge
Simple pursuit behavior

- Faster target
- Slower target
Oversteer due to angular momentum
Pursuit with heading prediction
Conclusions

• Autonomous characters
 – Definitions
 – Applications

• Steering behaviors
 – Toolkits and procedural composition
 – Evolutionary computation
 – Issues related to accurate physical models