Real-Time Video for Computer Entertainment

Richard Marks
Sony Computer Entertainment America
Research & Development Division
Outline

• Background
• Video Input for PS2
• Natural Interfaces
• Conclusions
• Future Work
Sony Computer Entertainment

- Subsidiary of Sony
- Responsible for PlayStation-related products
- SCEI (Tokyo)
- SCEE (London)
- SCEA (Foster City, CA--near SanFran)
Sony Computer Entertainment America (SCEA)

- **R & D**: 15 people in Foster City, CA
- **Mission**: Catalyze new ideas for computer entertainment
- **Focus**: Software for PlayStation2
 - Advanced rendering
 - Intelligent characters
 - Physical simulation
 - Digital interfaces
My Background

- MIT, B.S. 1990 in Avionics
- Stanford, Ph.D. 1995 in underwater robotics
- Teleos Research, 10 person computer vision startup
- Autodesk, makers of AutoCAD, worked on photo-to-model research
- Digital Video Art, graphics consulting
My Research Goals

• **Explore new capabilities generated by real-time video input to PS2**
 • Investigate alternative user-input mechanisms for PS2 (besides joystick)
 • Understand limitations of low-cost video input
 • Create new video-based entertainment models
Real-time Video Research

- **Natural Interfaces**
 - SIGGRAPH 2000 sketch, emerging technology
 - Game Developer Conference 2001

- **Enhanced Reality**
 - ACM1
 - SIGGRAPH 2001
PlayStation2, not PC

- **Platform is constant**
 - iLINK (IEEE1394) and 2 USB ports
 - Known compute capability (much)

- **Very diverse audience**

- **Unique architecture**
 - Highly parallel
 - Micro-programmable
 - Data-centric
PlayStation2

- RAM (32 MB)
- RAM (2 MB)
- EE: Emotion Engine
 - MIPS-based core
 - 2 FP Vector Units
 - Image Proc. Unit
- GS: Graphics Synthesizer
 - 4 MB on-die VRAM
- IOP: I/O Processor
- SPU2: Sound Processor
- DVD/CD
- ROM

Connections:
- 2 USB
- 1 iLINK (IEEE 1394)
- HD/ETHERNET
- VIDEO OUT
- AUDIO OUT
Current Setup

- **USB webcam (≤$50)**
 - 30 Hz YUV420 video
 - 320x240 compressed, 160x120 uncompressed

- **Video processing performed by core**
 - Decompression (bit-stream decode, IDCT)
 - Low-level image filters (smooth, threshold, etc.)
 - Segmentation, matching, tracking

- **Demo**
Natural Interfaces

• Intuitive
• Simple
• Enabling
• Enjoyable

⇒ Video-based interfaces, with and without props
Specification

- Fun
- Intuitive
- Enabling
- Real-time
 - 30 frames/second
 - Less than 3 frames total latency
- Robust
 - Graceful failure/error recovery
Medieval Chamber

- **Multiple color-based tracking approaches**
 - Richard Marks

- **Advanced rendering including shadows, transparency, reflections, etc.**
 - Gabor Nagy

- **Physical simulation/collisions**
 - Eric Larsen
Medieval Chamber

- **Known camera, objects**
 - Spheres and cylinders have special projection properties

- **Tracking steps**
 - Color segmentation
 - Centroid, moment calculation
 - Windowed centroid, moment calculation
 - Color-transition detection
 - Situational probabilistic ambiguity resolution
 - Kalman filtering
Medieval Chamber

• Sphere
 – \(x,y\) from centroid,
 – \(z\) from principal moment
 – \(R_x, R_y\) from dot centroid (given \(x,y\))

• Cylinder
 – \(x,y\) from centroid
 – \(R_z\) from angle of principal moment
 » Marker used to resolve ambiguity
 – \(z\) from secondary moment
 – Body \(R_x\) from principal moment (given \(z\))
 » Foreshortening used used to resolve ambiguity
 – Body \(R_y\) from helical stripe
Medieval Chamber

- Combination of sphere and cylinder provides most robust tracking
Marionette

• **Alternative form of character control**

• **Traditional marionette**
 • Darwin the Wizard, created by Daniel Oates

• **Virtual marionette**
 • 3D model by Care Michaud
Marionette

- Color segmentation
- Line fitting to find T shape
- T shape analysis to recover puppet parameters
Planet Explorer

• 3D viewing, navigation
• Earth rendering
 • Greg Corson
• Rotating the ball rotates the earth
• Proximity of ball to camera adjusts zoom
Planet Explorer

- Color segmentation/centroid to find ball
- Principal moment to adjust zoom
- Motion-estimation to measure rotations
Fly

- Flight simulation
- **Procedural landscape**
 - Tyler Daniel
- **Relative arm angles determine bank angle**
- **Average arm angles determine attack angle**
- **Arm motion increases airspeed**
- **Shadow wings mimic arms**
Fly

- Centroid/ moment determines body extent
- Principal axis angles of outer regions correspond to arm angles
Conclusions

- Known props can provide more information and still be natural
- Area-based measurement more robust and precise than lineal measures
- Precision more important than accuracy
- Color sensitive to lighting, but color transitions are not
Conclusions (contd.)

- Make signal proportional to action
- Secondary motion can enhance perceived response (and hide error)
- Display perspective important
Future Work

• Attach interfaces to *real* games
• Investigate interfaces for creative content generation
• Enhanced Reality research
Enhanced Reality: What is it?

- Starting with live audio/video, enhance it by adding/modifying the content
- Not virtual reality!
- Similar to Augmented Reality (a la MIT Media Lab), but with entertainment focus
- Consists of both enhancements to user and enhancements to environment
Virtual Pet
Color Transitions

- Project (Cr, Cb) for each pixel onto a line
- Similar to barcodes, but selectable
- Maximal separation produces best results
- Robust to lighting variation
- Patents pending
Hand Puppet

- Very simple form of character control
- 3D models by Guy Burdick
Hand Puppet

• Color segmentation to locate hands
• Split screen for left/right hands
• Centroid, moments and principal moment orientation
• Split along principal moment, principal moment orientations provide mouth angle