Enhanced Reality: A New Frontier for Computer Entertainment

Richard Marks
Enhanced Reality?

- Augmented reality but with an entertainment focus
 - Minimize encumbrance
 - Utilize common hardware
 - Simplify setup/calibration
 - Create an enjoyable user experience
Research Goals

• Natural User Interfaces
 – Allow people to interact in a more natural, enjoyable manner

• Real-time Special Effects
 – Enable people to experience for themselves the kind of special effects seen in the movies
Related work

• Many years of SIGGRAPH
 – Myron Krueger’s art exhibits
 – MIT media lab ALIVE system
 – Interval’s Magic Mirror

• Reality Fusion, ePlanet, etc.
 – Primarily use motion detection or background subtraction to create sprites
Current Setup

- Standard television set
- PlayStation2 for video processing and graphical rendering
- 1394 webcam (<$90 retail)
 - 30 frames/sec uncompressed video
 - 320x240 YUV422
 - 640x480 YUV411
Technologies

• Scene Interpretation
 – Participant tracking
 – 3D object tracking
 – Lighting estimation

• Rendering
 – Lighting
 – Compositing

• System
Participant Tracking

- Segmentation
 - Background subtraction

- Motion estimation
 - Optical flow
 - Feature tracking

- Part labeling
 - Face detection/tracking
 - A Survey on Face Detection Methods. Yang, Ahuja, Kriegman
 - Limb finding/tracking
 - A Survey of Computer Vision-Based Human Motion Capture. Moeslund, Granum.
3D Object Tracking

- Color-based tracking
 - Spheres
 - 3D position from centroid and radius
 - Rotation rate is also measurable using 2D visual flow at centroid
 - Illumination unaffected by rotation
 - Very fast and simple
 - Sphere and cylinders
 - 6 DOF tracking, SIGGRAPH 2000.
Lighting

• From a known sphere
 – Static
 • Inspired by Debevec’s work
 • High dynamic-range estimation possible
 – Dynamic
 • Real-time light source estimation
 • Real-time light map
Compositing

- Z-buffer rendering
 - Render the tracked sphere to Z-buffer only
- Alpha feathering
 - Render CG to texture, create an alpha stencil, blur the alpha stencil, render to screen
 - Still have z-buffer aliasing
Magic duel

- 3D color tracking
- Motion detection
- Figure segmentation
- Image distortions
- Compositing
System

- Use video as texture for a mesh
- Delay video to give time for processing
Virtual character: *Misho the witch*

- *Misho* stands on the red ball
- *Misho* likes to watch the green ball
- *Misho* tries to entertain herself (and you)
Virtual character: Seymour

- Seymour’s plane follows the green ball
- *Seymour* jumps out onto the red ball
- *Seymour* loses his balance if you move the red ball too fast
- *Seymour* jumps back in if his plane comes close
- Seymour’s plane always rescues him
Issues

• Lighting conditions
 – Insufficient ambient lighting
 – Extreme back-lighting (windows)

• Visual distractions
 – Mirrors
 – Movement, color
Conclusions

- Real-time movie special effects are coming soon
- Video input will be a part of future computer entertainment
Special Thanks to:

- Ohba-san for his fire/water demo
- Tanya Scovill and Care Michaud
- Tyler Daniel and Gabor Nagy
- Scott Butler for helping with Magic Duel